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The approximation of the Voigt line shape by the linear sum-  wherew, andwg are the Lorentzian and Gaussian full widths

mation of Lorentzian and Gaussian line shapes of equal width is gt half maximum height (FWHM), and where
well documented and has proved to be a useful function for

modeling in vivo 'H NMR spectra. We show that the error in

determining peak areas is less than 0.72% over a range of simu- _ 1 - ln2 Wi
9 ) w, = p=+In2 ,
lated Voigt line shapes. Previous work has concentrated on em- T, Wg
irical analysis of the Voigt function, yielding accurate expressions
" , tring i com : 2,In2f' 2\In2(f—fo)
for recovering the intrinsic Lorentzian component of simulated = ! ey 0
line shapes. In this work, an analytical approach to the approxi- wg q Wg ’

mation is presented which is valid for the range of Voigt line
shapes in which either the Lorentzian or Gaussian component is
dominant. With an empirical analysis of the approximation, the
direct recovery of T, values from simulated line shapes is also

wheref, is the frequency at the center of the resonaficdas
the transverse relaxation time of the metabolite under inves

discussed.  © 2000 Academic Press gation, and wheré’ is the frequency shift of the functions in
Key Words: Voigt; approximation; NMR spectroscopy; quanti- the convolution integral (i.e., the variable of integration).
fication; modeling. The proportion of Lorentzian and Gaussian contributions t

the Voigt function is characterized by the Voigt parameter
which is defined as

INTRODUCTION
WL
Marshallet al. (1) and Frieseet al. (2) describe the limita- a= We (2]
tions of using fixed line shape models for accurate quantifica-

tion of in vitro and in vivo NMR spectra of human brain 50 that asa — o, the Lorentzian component is dominant; a

metabolites. Although metabolite signals may be intrinsically”_ 1 there is an equal contribution from the Lorentzian an
monoexponential, imperfect shimming and susceptibility Var@auséian componer?tS' while as— 0, the Gaussian compo-

ations cause a spread of resonant frequencies within the spec-, . .
nent is dominant.

troscopic volume of interest. For each metabolite resonance, s .
. . . . A common method of quantifying NMR spectra is to com:
the free induction decay (FID) will contain a roughly normal . . . .
uter fit the experimental data using a model function who:t

distribution of frequencies which can be pragmatically approx- L : . )
) . . L component parameters are optimized in an iterative manr
imated by a Gaussian function. The metabolite line shapés

. . . ._until the squared difference between the experimental data &
resulting from the Fourier transformation (FT) of the tim L : -
. . : . . e model data is minimized (nonlinear least squares fitting
domain data will be a Gaussian broadening (convolution) . . S
o . o se of the exact Voigt function as a model would require th
the intrinsically Lorentzian peaks. Such a convolution is we

known to produce a Voigt line shape, a familiar profile ir(}:alculatmn of Eq. [1] for each data point in the spectrun

spectral line shape analyse®-6). The normalized Voigt line within each iteration of the fitting process. The computation:
: S burden therefore scales a$, wheren is the number of data
shape §) as a function of frequencf; is given as

points. Although within modern computing capabilities sucl
intensive computing would present an unnecessary time burc

p2 [ exp(—=¢?) when analyzing multiple spectra, such as in spectroscoy
V() = sz, Wit (q= 02 d¢, [1] (chemical shift) imaging, where typically, an array ob88
U spectra may be available from a subject.
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Previously, accurate Voigt approximations were developed os
(3, 5, 7-9 and one such approximatioy; ( f) utilizes a linear it
combination of normalized Lorentziah(f), and Gaussian £
G(f), functions given as sl 1

;

by
N
N

V/(f)y=alrL(f) + (1 —-r)G(f)], [3]

0.4 ¢
where a is the area of the combined function ands the : ’ .
fractional parameter which varies the relative contributions &t + N

L( f ) and G( f ) +  Gaussian | Lorentzian n

Since Eq. [3] is computed only once for each data point, the 2 * ﬁ& A
computational burden will scale linearly with the number of B e .,
data pointsn. The approximation is therefore a more conve- )
nient model for multiple spectra analysis where it is desirable L
to minimize the computational time, providing the simpler ° ! 2 3 4

model offers a negligible loss in accuracy. Voigt parameter, a

The normalized forms of Lorentzian and Gaussian functions
FIG. 1. Use of the approximation as a model function to determine pez

are given as
areas results in errors of less than 0.72% over a range of Voigt line shapes."
peak area residual as a function of the Voigt parametes plotted.

Residual

£) = 2 1
I—( ) - ’7TWL (f _ .|:0> 2 [4’]
1+
w, /2 [(t) = exp(—mw,t). [6]
In2 -t 2 . _ . .
G(f) = . [5] Applying an inverse FT to Eqg. [5] gives a Gaussian decs
WG/Z\"” 2 defined fort > 0 as
In practice, the FWHM of the Lorentzian and Gaussian AWt |\ 2
componentsv, andw, are restricted so as to be identical. This gt) = exp{ —( 2 /m) ] [71
Y

common widthw is thus also the FWHM of the approximated
Voigt line shape. This restriction of the width, along with the
approximation itself has been discussed by Kielkd@fwho The actual Voigt function in the time domain(t) is thus given
showed that the resulting errors were less than 1.2% in term&8f
line shape amplitude. Using simulated spectra (described later)

to generate a comprehensive range of Voigt lineshapes, we v(t) = 1(t) - g(t). (8]
have shown X0) that the corresponding peak area errors are
less than 0.72% (Fig. 1). From Egs. [6], [7], and [8] we obtain

Equation [3] can be readily incorporated into a standard
nonlinear least squares fitting routine to return the model wet \ ?
parameters, r, f, andw. At the two extremes this model is v(t) = eXD(—WWLt)eXP[ _<2\’Iﬁ> ] [9]

exactly correct so that whan= 0, V'(f) is purely Gaussian
Sg?wggﬁnrr;ulgeva( f 305”?1:;22/ \I;girinltifnfr;.hza:ausezoﬁég on OIThe significant part of the NMR signal occurs at the begir
P bp 9 b P ning of the FID ¢ < T,) where the signal to noise ratio is

ing to the varying contributions fror(f) and G(f). large, so Eqg. [9] is now expanded as an exponential seri
o limited tot?, as any further expansions to include higher orde
THEORY terms oft do not reveal any additional useful information. The

The usefulness of Fourier techniques when dealing Wiﬂ?tual Voigt function now becomes

convolution processes lies in the convolution theorem so that if - -
a convolution is to be performed in the frequency domain then, _a_ WL TWs) L,
by transforming the functions into the time domain, the process 2 41n?2
becomes a much simpler one of multiplicatidiri)

Applying an inverse FT to Eq. [4] gives a decaying expoFhe Voigt approximation in the time domaimn(t) is given by

nential defined fot > 0 as a linear sum

[10]
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v (t) =rl(t) + (1 —r)g(t). [11] Similarly, equating coefficients af we obtain
Denoting the Lorentzian and Gaussian FWHMs in the approx-  w2w?  72w?  ro2w?  ro2w?  riw?
imation asw; andwyg, respectively, so that from Egs. [6], [7], 2 " s4ain2_ 2 + 4In2 41In2

and [11], and expanding as an exponential series up to terms in

t?, we obtain
Hence,

v () =r[1—aw(t+3(awit)2+...]

( ! 2 FY (1o oo
Wt | 2 2in2)W T AWM T o)W T 2adn2/Wt T
ra-nl1-(=) £ |, n2
( )[ <2\’|n2> ] 12l

Using the quadratic method we obtain the two possible sol
The ratio of the Lorentzian and Gaussian FWHMs comprisirt@pns
the approximatiora’, is given as

, “uf(emz) = |(3one) A W
a,_WL- [13] w=w|5+In + 5 In 22| [17]

Wg

Only the root involving the positive square root gives the
correct limit ofw,_ for a — o, and the correct range of0 —
% , SO that

We recall that the approximation detailed by Kielkog) (
and investigated previously by the authot§)(restricted the
FWHMs of the Lorentzian and Gaussian components to
equal so thatvi = wi = w, which corresponds to the case

2
wherea’ = 1. The approximation given in Eq. [12] now _ 1 1 1
becomes W= W, 2+In2 + 2—In2 +az . [18]
v'(t) =r[1— (7wt + 3 (7w)’t> + .. ] Substituting forw into Eq. [16] we obtain
+ (1 )[1 ( it )2 ] [14]
-Nll1-|(— o 1
2\In2 r= . [19]
1 1
Lorentzian Limit of the Voigt Function 2" In2j+ 2 In2j + a2
As the actual Voigt line shape becomes more Lorentzian in

nature, Gaussian Limit of the Voigt Function

As the Voigt lineshape becomes more Gaussian in nature

1 .
W, > Wg |.e.,5 — 0. wWe>w, ie,a — 0.

Expressing the general case of the Voigt function in Eq. [10] i
Expressing the general case of the Voigt function in Eq. [10] kerms of the Gaussian FWHM,, we have
terms of the Lorentzian FWHM_, while retaining terms up to
a® to ensure thatv remains a function o, we have

m?a’wi WZWé) )
t

v(t) = 1 — (rawg)t + ( 5 ~ 42

m2w?i  miw?
=1- 2t BT e . . .
v(t) =1 (mw)t + ( 2~ Za%n 2>t + [15] Discarding higher order terms afwe have
As there are now only two unknown variables, deriving ex- B TWE) 5
pressions for andw in terms ofw,_ anda can be achieved by v(t) =1 — (mawe)t — 41n2 t [20]

equating coefficients df andt® in Eqgs. [14] and [15].

Equating coefficients of we obtain As there are now only two unknown variables, deriving ex

pressions for andw in terms ofws anda can be achieved by

- Wi [16] equating coefficients afandt” in Egs. [14] and [20], respec-
Cowe tively.
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Equating coefficients of and using Eq. [2], we obtain range of O to 1, the model used an internal paramitesith
r = exp(—|R|). For satisfactory convergence to accurat
awg W, parameter values, we found thais required to be initially set
= - w [21]  at 100% Lorentzian.

The peak areas of the synthetic spectra and the mode
spectra were determined by a simple summation of the de
points comprising the peaks, with a peak area residual col
puted for each point. Fan vitro andin vivo spectra, however,
overlapping peaks severely limit integration so peak areas ¢
taken directly from the fitted peak area parameter.

Similarly, equating coefficients df we obtain

ﬂ'zwé ro2w?  rar?w? 2w?

“24m2- 2 Tam2 42

Hence,
RESULTS
w2 —awg(1+ 2 In 2)w — w3 = 0. [22]
The accuracy of the Voigt approximation is presented in Fi
Using the quadratic method and discarding term@inwe 1, where the Voigt parameteris plotted against the peak area

obtain the two possible solutions residual. The derivation is effective in the range of Voig
functions where either Lorentzian or Gaussian effects don
1 nate, and manifests itself as relationships between the pare
W= WG[""(z +1n 2) * 1] [23]  eters in the actual Voigt function and those in the approxim:
tion.
Only the root involving the positive sign gives the correct limit " the Lorentzian dominated regiora (> 1), Eq. [18]
of wg for a — 0, so that using Eq. [2] we find expresses the FWHM of the Voigt approximationn terms of

the FWHM of the Lorentzian contribution to the actual Voig

1 1 function w_, and the Voigt parametea, whereas Eq. [19]

w = W|_<2 +1In2+ a)' [24] expresses the fractional paramateonly in terms of the Voigt
parametera. The accuracy of these expressions is demol

strated in Figs. 2a and 2b, which comparandr as returned

by the fitting routine on synthetic data, witw and r as
calculated from Egs. [18] and [19], respectively. The differ

Substituting forw into Eq. [21], we have

= 1 [25] €nce between the expression for the common line width
} In 2 } ' given in Eq. [18] and the value returned by the fitting routine
2 +tinet a is 0.18% in the extreme Lorentzian regian< 440), andhis

value increases steadily so that whes= 1.1, thedifference
METHOD is 22.9% (Fig. 2a). Similarly, the difference between the frac
tional parameter, given in Eq. [19], and the value returned by
Software for the generation of synthetic data and frequenttye fitting routine is 0.13% in the extreme Lorentzian regio
domain modeling was written in-house using the “C” languada = 440) andthis value increases steadily so that whes
on a SPARC-10 workstation (SUN Microsystems, Mountaih.1, thedifference is 26.4% (Fig. 2b).
View, CA) running UNIX. To generate actual Voigt functions, In the Gaussian dominated regioa € 1), Eq. [24] ex-
a Fourier transform is applied to the multiplication of ampresseaw in terms of the FWHM of the Lorentzian contribu-
exponentially decaying sinusoid, consisting of 2048 data poiritsn to the actual Voigt functiomv_, and the Voigt parameter
at 1-ms intervals, by a Gaussian decay. A range of Voigi and Eq. [25] expressasin terms ofa alone. The accuracy
parameters was achieved by fixiig at 50 ms (Lorentzian of these expressions is demonstrated in Figs. 3a and 3b, wh
FWHM, w, = 6.37 Hz) andvarying the contribution of the comparew andr as returned by the fitting routine on synthetic
Gaussian decay. data, withw and r as calculated from Eqgs. [24] and [25],
The resulting synthetic spectra, consisting of single peakespectively. The difference between the expression for tl
were computer fitted using a Levenberg—Marquardt nonlineesmmon line widthw given in Eq. [24] and the value returned
least squares fitting routin@?) using the Voigt approximation by the fitting routine is 1.5% in the extreme Gaussian regic
in Eq. [3] as the model function. Initial estimates of the mod€h = 0.022) andhis value increases steadily so that when
parameters were determined automatically and convergenc®163, thedifference is 24.7% (Fig. 3a). The difference betwee
the parameter values was deemed to have been achieved whenfractional parameter given in Eq. [25] and the value
the change in the parameter values was less than 1’inTd0 returned by the fitting routine is between 30 and 33% over t
restrict the fractional parametetto the physically meaningful bulk of the Gaussian region (Fig. 3b).
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a 2w - 2% eled in the fitting routine byv, accurate to within 0.37% over
# Ty +  %Residual X
E S thearstical e data a large range of Voigt parameters, therefargw was plotted
‘ E 2 against (1— r). To obtain an empirical relationship farg, a
curve-fitting facility with a suggested equation (1 r) =
k(ws/w)* was applied to the plot to determikeandx (Fig. 4).
*® 5 Using a nonlinear least squares ktandx were found to be
2 0.97 and 2.3, respectively, giving
14
10 R
1—r 0.43
Wg = W( ) [26]
s 0.97
The accuracy of Eq. [26] in the Gaussian regien<{ 1) is
0 within 1% and then drops through the Lorentzian regian
1) so that whera = 10, the accuracy is around 26%.
b 1.1 30
a 5o 40
— 25 + % Residual
P A At theoretlcal . +
N fit of synthetic data . +
5 % Residual @ P
° e theoretical 2 + 7 30
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FIG. 2. lllustration of the accuracy of the derivation in the Lorentzian Voigt parameter, a
limit of Voigt line shapes. (a) Model parameter the line width: Plot of the o078 w

theoreticalw (Eq. [18]), actual (returned by the fitting routine on synthetic b
data) and the corresponding residual, as a function of the Voigt parameter R
Both line widths are normalized to the underlying Lorentzian width (b) + R T L
Model parameter, the fractional parameter: Plot of the theoreticalEq. 080 et 30
[19]), actualr (returned by the fitting routine on synthetic data) and the“_-

corresponding residual, as a function of the Voigt parameter

+

g
[ -
£ 045 et -
2_ - 20 E
[2]

DISCUSSION § o3 ®

. . . . E Gaussian Lorentzian
In spin echo experiments, estimating tfie values (and * region | region {10
0.15 B E——

% Residual

hence Lorentzian line widths) of metabolites usually requires
spectroscopy measurements to be repeated with at least five [ /-~ | - theoretical _

' ) i ) fit of synthetic data
different echo times in order that there are enough data points o 0
to accurately model the decay rate of the signal intensities. It oz o o8 o8 " "2
would be of value to reduce the time of such experiments by
directly recovering the underlying Lorentzian line widths of FiG. 3. Illustration of the accuracy of the derivation in the Gaussian limi
experimental line shapes. The following empirical analysis of Voigt line shapes. (a) Model parameter, the line width: Plot of the

the approximation as a model function discusses the possibifitgoreticaw (Eq. [24]), actualw (returned by the fitting routine on synthetic
of such a recovery from the fitted model parameters. data) ‘_amd the correspondmg residual, as a fun<_:t|on of the _Vmgt_parameter
hei | ided h. plotti h Both line widths are normalized to the underlying Lorentzian width (b)
Wert elmet_a -(8) provided a grap o plotting the parameter§/I0de| parameter, the fractional parameter: Plot of the theoreticalEq.
(1 — r) againstwg/w,, wherew, is the FWHM of the [25)), actualr (returned by the fitting routine on synthetic data) and the

experimental line shape. Although, is unknown, it is mod- corresponding residual, as a function of the Voigt parameter

Voigt parameter, a
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10 0.02 of Lorentzian and Gaussian contributions to the model fun
5 from synthetic data . tion. This parameter must accurately represent the effectiv
san: (1-1170.966w, 1w ness of the shimming procedure (and hence the Voigt p
rametera) and when fitting noiseless, single-peak spectra ¢
0.1 differing Voigt profiles, the routine was found to adjusin
accordance witha (Fig. 5). On these simulated spectra, Eq
[29] proved to be useful only over the Lorentzian region
where the accuracy was within 1% up &= 5, falling to
0 14.5% whena = 1.05.

In our in vivo work using single-voxel spectroscopy,
cubic volumes of interest have been localized in the pariet
white matter of patients and healthy volunteers by usin

-001 PRESS with an echo time of 135 ms. In addition to studie
on the line shape of the lactate doubléB(14, we have
e concentrated on the quantification of choline, creatine, ar
FIG.4. Determination of an empirical expression fag, which is the line N-acetyl-aspartate, since these metabolites are well pi
width of Gaussian component that broadens the intrinsic Lorentzian line shagented above baseline noise for Iong echo time acquisitior
resulting in actual Voigt Iine_ ghapes._The expressio_n is i_n terms of modglse of Eq. [29] to determin&, values of noiseless simu-
frzrc?ﬁﬁfsargﬁ?. by the fitting routine; the model line width and, the i o of these three peaks again proved to be useful or
over the Lorentzian region. The initially 100% Lorentziar
peaks & = «) when gradually broadened (decreasing),
er&sulted in an accuracy within 1% up o= 5 falling to
20, 10, and 14% for each peak, respectively, when 1.
In all cases however, the peak areas were accurately det
mined.
In our previous literaturel(), we used linear combinations
of Lorentzian and Gaussian functions of unit amplitude, an

. ) IR ) in that case the fractional parametar)( has a different
Equation [27] is accurate to within 1% and sineg can be jnierpretation than the used in functions of unit area
obtained from Eq. [26] anev can be substituted fow, with

sufficient accuracyw, can now be obtained from

08

+
+
S+

Iy

+

Residual

Based on a table of standard Voigt profiles, the plott
results of Van de Hulst and Reesinck),( were fitted by
Whiting (9) to obtain the empirical expression

wy = 3[wg + (Wi + 4wg]. [27]

1.0

wi-w% e
w, = T [28]
0.8

r - fit using unit area function
— — — r'-fit using unit amplitude function

The residual between Eq. [28] and the actual valuevpfis
within 1% over the Lorentzian regiora(> 1). The residual
increases in the Gaussian regian< 1) to within 3.4% at =
0.15 andthen increases sharply thereafter.

Recalling thatw, = 1/#T,, from Eq. [28] we have an
expression fofT, given as

06

Fractional parameter

02
w

T mw? - wy)

(29]

Lorentzian
region

2 4 6 8 10

The usefulness of Eqgs. [26] and [28] (obtained from the
fitted parameters andw) to routinely return the widths of
the line broadening componewt,, and the intrinsic Lorent-  FIG. 5. The fractional parameter accurately reflects the nature of lin
zian componenw, (and hence and, values) of experi- shapes: The fitting routine adjustéthe relative amounts of the Lorentzian and
mental line shapes is critically dependent on a fitting routirf‘éaussian contributions to the model) in accordance witlithe relative

that ret ameter value hich accuratelv represent ounts of the Lorentzian and Gaussian contributions to the line shape),
returns par I values wnich accurately represen lated, noiseless, single-peak spectra of varying Voigt profiles. The fra

nature of the line shapes. This is especially so with thgnal parameter returned when fitting with a unit amplitude functidi {s
fractional parameter, which governs the relative amountsplotted for comparison.

Voigt parameter, a



(Fig. 5). The relationship betweanandr’ can be shown to

be

A derivation of an approximation to the Voigt function
consisting of a linear combination of Lorentzian and Gaussiaft

APPROXIMATION OF THE VOIGT FUNCTION

p— r’
r= 1 . [30]

1
— 4 1_7
e S|

min2

CONCLUSIONS

functions of equal width is presented. The derivation given is
limited to the range of Voigt line shapes which are eithef
predominantly Lorentzian or Gaussian in nature. It would be of
interest, however, to extend this to include valuea ofose to

1. None the less, use of the approximation as a model function quant. Spectrosc. Radiat. Transfer. 8, 13791384 (1968)
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cations to spectral-line profile analysis, J. Opt. Soc. Am. 63, 987-
995 (1973).

. H. C. van de Hulst and J. J. M. Reesinck, Line breadths and Voigt
profiles, Astrophys. J. 106, 121 (1947).

. A. B. McLean, C. E. J. Mitchell, and D. M. Swanston, Implementa-
tion of an efficient analytical approximation to the Voigt function for
photoemission lineshape analysis, J. Electron Spectrosc. Relat.
Phenom. 69, 125-132 (1994).

. K. Unterforsthuber and K. Bergmann, Mathematical separation
procedure of broadline proton NMR spectra of crystalline polymers
into components, J. Magn. Reson. 33, 483-495 (1978).

J. P. Grivet, Accurate numerical approximation to the Gauss-
Lorentz lineshape, J. Magn. Reson. 125, 102-106 (1997).

. G. K. Wertheim, M. A. Butler, K. West, and D. N. E. Buchanan,
Determination of the Gaussian and Lorentzian content of experi-
mental line shapes, Rev. Sci. Instrum. 45:11, 1369-1371 (1974).

9. E. E. Whiting, An empirical approximation to the Voigt profile, J.

results in peak areas that are accurate to within 0.72% over E}Be S. D. Bruce, I. Marshall, J. Higinbotham, and P. H. Beswick, The
entire range of the Voigt parameter. With an empirical analysis

of the approximation, we have shown that the direct recovery
of T, values from line shapes is restricted to peaks that are
11.

predominantly Lorentzian.
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