
d

fi

Journal of Magnetic Resonance142,57–63 (2000)
Article ID jmre.1999.1911, available online at http://www.idealibrary.com on
An Analytical Derivation of a Popular Approximation of the Voigt
Function for Quantification of NMR Spectra

Stephen D. Bruce,* John Higinbotham,* Ian Marshall,† and Paul H. Beswick‡

*School of Mathematical and Physical Sciences, Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, Scotland;†Department of Medical Physics
and Medical Engineering, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland; and

‡School of Life Sciences, Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, Scotland

Received January 19, 1999; revised June 25, 1999
-
ific
in
all
ar
sp

anc
a

rox
ap
me
) o

we
in

e

ths

esti-
in

s to
r

; at
and
o-

m-
hose
nner

a and
ing).
the

um,
onal
ta
uch
urden
opic
The approximation of the Voigt line shape by the linear sum-
mation of Lorentzian and Gaussian line shapes of equal width is
well documented and has proved to be a useful function for
modeling in vivo 1H NMR spectra. We show that the error in
determining peak areas is less than 0.72% over a range of simu-
lated Voigt line shapes. Previous work has concentrated on em-
pirical analysis of the Voigt function, yielding accurate expressions
for recovering the intrinsic Lorentzian component of simulated
line shapes. In this work, an analytical approach to the approxi-
mation is presented which is valid for the range of Voigt line
shapes in which either the Lorentzian or Gaussian component is
dominant. With an empirical analysis of the approximation, the
direct recovery of T2 values from simulated line shapes is also

iscussed. © 2000 Academic Press

Key Words: Voigt; approximation; NMR spectroscopy; quanti-
cation; modeling.

INTRODUCTION

Marshallet al. (1) and Frieseet al. (2) describe the limita
tions of using fixed line shape models for accurate quant
tion of in vitro and in vivo NMR spectra of human bra
metabolites. Although metabolite signals may be intrinsic
monoexponential, imperfect shimming and susceptibility v
ations cause a spread of resonant frequencies within the
troscopic volume of interest. For each metabolite reson
the free induction decay (FID) will contain a roughly norm
distribution of frequencies which can be pragmatically app
imated by a Gaussian function. The metabolite line sh
resulting from the Fourier transformation (FT) of the ti
domain data will be a Gaussian broadening (convolution
the intrinsically Lorentzian peaks. Such a convolution is
known to produce a Voigt line shape, a familiar profile
spectral line shape analyses (3–5). The normalized Voigt lin
shape (6) as a function of frequencyf, is given as

V~ f ! 5
2m 2

p 3/ 2wL
E

2`

1` exp~2z 2!

m 2 1 ~q 2 z! 2 z dz, [1]
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wherewL andwG are the Lorentzian and Gaussian full wid
at half maximum height (FWHM), and where

wL 5
1

pT2
, m 5 Îln 2SwL

wG
D ,

z 5
2Îln 2f9

wG
, q 5

2Îln 2~ f 2 f0!

wG
,

wheref 0 is the frequency at the center of the resonance,T2 is
the transverse relaxation time of the metabolite under inv
gation, and wheref9 is the frequency shift of the functions
the convolution integral (i.e., the variable of integration).

The proportion of Lorentzian and Gaussian contribution
the Voigt function is characterized by the Voigt parametea,
which is defined as

a 5
wL

wG
[2]

so that asa 3 `, the Lorentzian component is dominant
a 5 1, there is an equal contribution from the Lorentzian
Gaussian components; while asa 3 0, the Gaussian comp
nent is dominant.

A common method of quantifying NMR spectra is to co
puter fit the experimental data using a model function w
component parameters are optimized in an iterative ma
until the squared difference between the experimental dat
the model data is minimized (nonlinear least squares fitt
Use of the exact Voigt function as a model would require
calculation of Eq. [1] for each data point in the spectr
within each iteration of the fitting process. The computati
burden therefore scales asn2, wheren is the number of da
points. Although within modern computing capabilities s
intensive computing would present an unnecessary time b
when analyzing multiple spectra, such as in spectrosc
(chemical shift) imaging, where typically, an array of 83 8
spectra may be available from a subject.
1090-7807/00 $35.00
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Previously, accurate Voigt approximations were develo
(3, 5, 7–9) and one such approximation,V9( f ) utilizes a linea
combination of normalized LorentzianL( f ), and Gaussia
G( f ), functions given as

V9~ f ! 5 a@rL ~ f ! 1 ~1 2 r !G~ f !#, [3]

where a is the area of the combined function andr is the
fractional parameter which varies the relative contribution
L( f ) andG( f ).

Since Eq. [3] is computed only once for each data point
computational burden will scale linearly with the numbe
data points,n. The approximation is therefore a more con
nient model for multiple spectra analysis where it is desir
to minimize the computational time, providing the simp
model offers a negligible loss in accuracy.

The normalized forms of Lorentzian and Gaussian func
are given as

L~ f ! 5
2

pwL

1

1 1 S f 2 f0

wL/ 2D
2 [4]

G~ f ! 5
2

wG
Îln 2

p
expF2S f 2 f0

wG/ 2Îln 2D
2G . [5]

In practice, the FWHM of the Lorentzian and Gauss
componentswL andwG are restricted so as to be identical. T
ommon width,w is thus also the FWHM of the approxima
oigt line shape. This restriction of the width, along with
pproximation itself has been discussed by Kielkopf (3) who

showed that the resulting errors were less than 1.2% in ter
line shape amplitude. Using simulated spectra (described
to generate a comprehensive range of Voigt lineshape
have shown (10) that the corresponding peak area errors
less than 0.72% (Fig. 1).

Equation [3] can be readily incorporated into a stan
nonlinear least squares fitting routine to return the m
parametersa, r , f, andw. At the two extremes this model
exactly correct so that whenr 5 0, V9( f ) is purely Gaussia
and whenr 5 1, V9( f ) is purely Lorentzian. Values ofr in
between produce approximated Voigt line shapes corres
ing to the varying contributions fromL( f ) andG( f ).

THEORY

The usefulness of Fourier techniques when dealing
convolution processes lies in the convolution theorem so t
a convolution is to be performed in the frequency domain t
by transforming the functions into the time domain, the pro
becomes a much simpler one of multiplication (11).

Applying an inverse FT to Eq. [4] gives a decaying ex
ential defined fort . 0 as
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l ~t! 5 exp~2pwLt!. [6]

pplying an inverse FT to Eq. [5] gives a Gaussian de
efined fort . 0 as

g~t! 5 expF2S pwGt

2Îln 2D
2G . [7]

The actual Voigt function in the time domain,n(t) is thus given
as

n~t! 5 l ~t! z g~t!. [8]

rom Eqs. [6], [7], and [8] we obtain

n~t! 5 exp~2pwLt!expF2S pwGt

2Îln 2D
2G . [9]

The significant part of the NMR signal occurs at the be
ning of the FID (t , T2) where the signal to noise ratio
large, so Eq. [9] is now expanded as an exponential s
limited to t 2, as any further expansions to include higher o
terms oft do not reveal any additional useful information. T
actual Voigt function now becomes

n~t! 5 1 2 ~pwL!t 1 Sp 2wL
2

2
2

p 2wG
2

4 ln 2D t 2 1 . . . . [10]

The Voigt approximation in the time domain,n9(t) is given by
a linear sum

FIG. 1. Use of the approximation as a model function to determine
areas results in errors of less than 0.72% over a range of Voigt line shape
peak area residual as a function of the Voigt parametera, is plotted.
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59APPROXIMATION OF THE VOIGT FUNCTION
n9~t! 5 rl ~t! 1 ~1 2 r ! g~t!. [11]

enoting the Lorentzian and Gaussian FWHMs in the app
mation asw9L andw9G, respectively, so that from Eqs. [6], [7
and [11], and expanding as an exponential series up to ter
t 2, we obtain

n9~t! 5 r @1 2 pw9Lt 1 1
2 ~pw9Lt!

2 1 . . .#

1 ~1 2 r !F1 2 S pw9Gt

2Îln 2D
2

1 . . .G . [12]

he ratio of the Lorentzian and Gaussian FWHMs compri
he approximationa9 , is given as

a9 5
w9L
w9G

. [13]

We recall that the approximation detailed by Kielkopf3)
and investigated previously by the authors (10) restricted th
FWHMs of the Lorentzian and Gaussian components t
equal so thatw9L 5 w9G 5 w, which corresponds to the ca
where a9 5 1. The approximation given in Eq. [12] no

ecomes

n9~t! 5 r @1 2 ~pw!t 1 1
2 ~pw! 2t 2 1 . . .#

1 ~1 2 r !F1 2 S pwt

2Îln 2D
2

1 . . .G . [14]

orentzian Limit of the Voigt Function

As the actual Voigt line shape becomes more Lorentzia
ature,

wL @ wG i.e.,
1

a
3 0.

Expressing the general case of the Voigt function in Eq. [1
terms of the Lorentzian FWHMwL, while retaining terms up t
a2 to ensure thatw remains a function ofa, we have

n~t! 5 1 2 ~pwL!t 1 Sp 2wL
2

2
2

p 2wL
2

4a2ln 2D t 2 1 . . . . [15]

As there are now only two unknown variables, deriving
pressions forr andw in terms ofwL anda can be achieved b

quating coefficients oft and t 2 in Eqs. [14] and [15].
Equating coefficients oft we obtain

r 5
wL

w
. [16]
x-

in

g

e
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n
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Similarly, equating coefficients oft 2 we obtain

p 2wL
2

2
2

p 2wL
2

4a2ln 2
5

rp 2w2

2
1

rp 2w2

4 ln 2
2

p 2w2

4 ln 2
.

ence,

S 1

2 ln 2Dw2 2 SwL 1
wL

2 ln 2Dw 1 S1 2
1

2a2ln 2DwL
2 5 0.

sing the quadratic method we obtain the two possible
ions

w 5 wLFS1

2
1 ln 2D 6 ÎS1

2
2 ln 2D 2

1
1

a2G . [17]

Only the root involving the positive square root gives
correct limit ofwL for a3 `, and the correct range ofr (0 2

), so that

w 5 wLFS1

2
1 ln 2D 1 ÎS1

2
2 ln 2D 2

1
1

a2G . [18]

Substituting forw into Eq. [16] we obtain

r 5
1

FS1

2
1 ln 2D 1 ÎS1

2
2 ln 2D 2

1
1

a2G
. [19]

Gaussian Limit of the Voigt Function

As the Voigt lineshape becomes more Gaussian in na

wG @ wL i.e., a 3 0.

Expressing the general case of the Voigt function in Eq. [1
terms of the Gaussian FWHMwG, we have

n~t! 5 1 2 ~pawG!t 1 Sp 2a2wG
2

2
2

p 2wG
2

4 ln 2D t 2 1 . . . .

Discarding higher order terms ofa we have

n~t! 5 1 2 ~pawG!t 2 Sp 2wG
2

4 ln 2D t 2. [20]

As there are now only two unknown variables, deriving
pressions forr andw in terms ofwG anda can be achieved b
equating coefficients oft and t 2 in Eqs. [14] and [20], respe
tively.
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60 BRUCE ET AL.
Equating coefficients oft and using Eq. [2], we obtain

r 5
awG

w
5

wL

w
. [21]

Similarly, equating coefficients oft 2 we obtain

2
p 2wG

2

4 ln 2
5

rp 2w2

2
1

rp 2w2

4 ln 2
2

p 2w2

4 ln 2
.

ence,

w2 2 awG~1 1 2 ln 2!w 2 wG
2 5 0. [22]

Using the quadratic method and discarding terms ina2, we
obtain the two possible solutions

w 5 wGFaS1

2
1 ln 2D 6 1G . [23]

Only the root involving the positive sign gives the correct li
of wG for a 3 0, so that using Eq. [2] we find

w 5 wLS1

2
1 ln 2 1

1

aD . [24]

Substituting forw into Eq. [21], we have

r 5
1

S1

2
1 ln 2 1

1

aD
. [25]

METHOD

Software for the generation of synthetic data and frequ
domain modeling was written in-house using the “C” langu
on a SPARC-10 workstation (SUN Microsystems, Moun
View, CA) running UNIX. To generate actual Voigt functio
a Fourier transform is applied to the multiplication of
exponentially decaying sinusoid, consisting of 2048 data p
at 1-ms intervals, by a Gaussian decay. A range of V
parameters was achieved by fixingT2 at 50 ms (Lorentzia
FWHM, wL 5 6.37 Hz) andvarying the contribution of th
Gaussian decay.

The resulting synthetic spectra, consisting of single pe
were computer fitted using a Levenberg–Marquardt nonl
least squares fitting routine (12) using the Voigt approximatio
in Eq. [3] as the model function. Initial estimates of the mo
parameters were determined automatically and converge
the parameter values was deemed to have been achieved
the change in the parameter values was less than 1 in 107. To
restrict the fractional parameterr to the physically meaningf
t
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l
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range of 0 to 1, the model used an internal parameterR with
r 5 exp(2uRu). For satisfactory convergence to accu
parameter values, we found thatr is required to be initially se
at 100% Lorentzian.

The peak areas of the synthetic spectra and the mo
spectra were determined by a simple summation of the
points comprising the peaks, with a peak area residual
puted for each point. Forin vitro andin vivo spectra, howeve
overlapping peaks severely limit integration so peak area
taken directly from the fitted peak area parameter.

RESULTS

The accuracy of the Voigt approximation is presented in
1, where the Voigt parametera is plotted against the peak a
residual. The derivation is effective in the range of Vo
functions where either Lorentzian or Gaussian effects d
nate, and manifests itself as relationships between the p
eters in the actual Voigt function and those in the approx
tion.

In the Lorentzian dominated region (a . 1), Eq. [18]
expresses the FWHM of the Voigt approximationw in terms o
the FWHM of the Lorentzian contribution to the actual Vo
function wL, and the Voigt parametera, whereas Eq. [19
expresses the fractional parameterr , only in terms of the Voig
parametera. The accuracy of these expressions is dem
strated in Figs. 2a and 2b, which comparew andr as returne
by the fitting routine on synthetic data, withw and r as
calculated from Eqs. [18] and [19], respectively. The dif
ence between the expression for the common line widw
given in Eq. [18] and the value returned by the fitting rou
is 0.18% in the extreme Lorentzian region (a 5 440), andthis
value increases steadily so that whena 5 1.1, thedifference
is 22.9% (Fig. 2a). Similarly, the difference between the f
tional parameterr , given in Eq. [19], and the value returned
the fitting routine is 0.13% in the extreme Lorentzian reg
(a 5 440) andthis value increases steadily so that whena 5
1.1, thedifference is 26.4% (Fig. 2b).

In the Gaussian dominated region (a , 1), Eq. [24] ex
pressesw in terms of the FWHM of the Lorentzian contrib
tion to the actual Voigt functionwL, and the Voigt paramet
a, and Eq. [25] expressesr in terms ofa alone. The accurac
of these expressions is demonstrated in Figs. 3a and 3b,
comparew andr as returned by the fitting routine on synthe

ata, with w and r as calculated from Eqs. [24] and [2
respectively. The difference between the expression fo
common line widthw given in Eq. [24] and the value return
by the fitting routine is 1.5% in the extreme Gaussian re
(a 5 0.022) andthis value increases steadily so that whena 5
0.53, thedifference is 24.7% (Fig. 3a). The difference betw
the fractional parameterr given in Eq. [25] and the valu
returned by the fitting routine is between 30 and 33% ove
bulk of the Gaussian region (Fig. 3b).



d
ire

st
oin
s.

s b
o

is o
ibil

ers

-

er

U e

w

limit
e
tic

d ter

M
the

ian
e
tic
ter

M
the

61APPROXIMATION OF THE VOIGT FUNCTION
DISCUSSION

In spin echo experiments, estimating theT2 values (an
hence Lorentzian line widths) of metabolites usually requ
spectroscopy measurements to be repeated with at lea
different echo times in order that there are enough data p
to accurately model the decay rate of the signal intensitie
would be of value to reduce the time of such experiment
directly recovering the underlying Lorentzian line widths
experimental line shapes. The following empirical analys
the approximation as a model function discusses the poss
of such a recovery from the fitted model parameters.

Wertheimet al.(8) provided a graph, plotting the paramet
(1 2 r ) against wG/wV, where wV is the FWHM of the
experimental line shape. Althoughw is unknown, it is mod

FIG. 2. Illustration of the accuracy of the derivation in the Lorentz
limit of Voigt line shapes. (a) Model parameterw, the line width: Plot of th
theoreticalw (Eq. [18]), actualw (returned by the fitting routine on synthe
data) and the corresponding residual, as a function of the Voigt paramea.
Both line widths are normalized to the underlying Lorentzian widthwL. (b)

odel parameterr , the fractional parameter: Plot of the theoreticalr (Eq.
[19]), actual r (returned by the fitting routine on synthetic data) and
corresponding residual, as a function of the Voigt parametera.
V
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five
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eled in the fitting routine byw, accurate to within 0.37% ov
a large range of Voigt parameters, thereforewG/w was plotted
against (12 r ). To obtain an empirical relationship forwG, a
curve-fitting facility with a suggested equation (12 r ) 5
k(wG/w) x was applied to the plot to determinek andx (Fig. 4).

sing a nonlinear least squares fit,k andx were found to b
0.97 and 2.3, respectively, giving

wG 5 wS1 2 r

0.97D
0.43

. [26]

The accuracy of Eq. [26] in the Gaussian region (a , 1) is
ithin 1% and then drops through the Lorentzian region (a .

1) so that whena 5 10, the accuracy is around 26%.

FIG. 3. Illustration of the accuracy of the derivation in the Gaussian
of Voigt line shapes. (a) Model parameterw, the line width: Plot of th
theoreticalw (Eq. [24]), actualw (returned by the fitting routine on synthe

ata) and the corresponding residual, as a function of the Voigt paramea.
Both line widths are normalized to the underlying Lorentzian widthwL. (b)

odel parameterr , the fractional parameter: Plot of the theoreticalr (Eq.
[25]), actual r (returned by the fitting routine on synthetic data) and
corresponding residual, as a function of the Voigt parametera.
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62 BRUCE ET AL.
Based on a table of standard Voigt profiles, the plo
results of Van de Hulst and Reesinck (4), were fitted by
Whiting (9) to obtain the empirical expression

wV 5 1
2 @wL 1 ÎwL

2 1 4wG
2 #. [27]

quation [27] is accurate to within 1% and sincewG can be
obtained from Eq. [26] andw can be substituted forwV with
sufficient accuracy,wL can now be obtained from

wL 5
w2 2 wG

2

w
. [28]

The residual between Eq. [28] and the actual value ofwL is
within 1% over the Lorentzian region (a . 1). The residua
increases in the Gaussian region (a , 1) to within 3.4% ata 5
0.15 andthen increases sharply thereafter.

Recalling thatwL 5 1/pT2, from Eq. [28] we have a
expression forT2 given as

T2 5
w

p~w2 2 wG
2 !

. [29]

The usefulness of Eqs. [26] and [28] (obtained from
fitted parametersr andw) to routinely return the widths o
he line broadening componentwG, and the intrinsic Loren

zian componentwL (and hence andT2 values) of experi
mental line shapes is critically dependent on a fitting rou
that returns parameter values which accurately represe
nature of the line shapes. This is especially so with
fractional parameterr , which governs the relative amou

FIG. 4. Determination of an empirical expression forwG, which is the line
idth of Gaussian component that broadens the intrinsic Lorentzian line s

esulting in actual Voigt line shapes. The expression is in terms of m
arameters returned by the fitting routine:w, the model line width andr , the

fractional parameter.
d

e

e
the
e

f Lorentzian and Gaussian contributions to the model f
ion. This parameter must accurately represent the effec
ess of the shimming procedure (and hence the Voig
ametera) and when fitting noiseless, single-peak spectr
iffering Voigt profiles, the routine was found to adjustr in
ccordance witha (Fig. 5). On these simulated spectra,

29] proved to be useful only over the Lorentzian reg
here the accuracy was within 1% up toa 5 5, falling to
4.5% whena 5 1.05.
In our in vivo work using single-voxel spectroscop

ubic volumes of interest have been localized in the par
hite matter of patients and healthy volunteers by u
RESS with an echo time of 135 ms. In addition to stu
n the line shape of the lactate doublet (13, 14), we have
oncentrated on the quantification of choline, creatine,
-acetyl-aspartate, since these metabolites are well
ented above baseline noise for long echo time acquisi
se of Eq. [29] to determineT2 values of noiseless sim

lations of these three peaks again proved to be useful
over the Lorentzian region. The initially 100% Lorentz
peaks (a 5 `) when gradually broadened (a decreasing
esulted in an accuracy within 1% up toa 5 5 falling to

20, 10, and 14% for each peak, respectively, whena 5 1.
In all cases however, the peak areas were accurately
mined.

In our previous literature (1), we used linear combinatio
of Lorentzian and Gaussian functions of unit amplitude,
in that case the fractional parameter (r 9) has a differen
nterpretation than ther used in functions of unit are

FIG. 5. The fractional parameter accurately reflects the nature of
shapes: The fitting routine adjustsr (the relative amounts of the Lorentzian a
Gaussian contributions to the model) in accordance witha (the relative
amounts of the Lorentzian and Gaussian contributions to the line shap
simulated, noiseless, single-peak spectra of varying Voigt profiles. The
tional parameter returned when fitting with a unit amplitude function (r 9) is
plotted for comparison.

pe,
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63APPROXIMATION OF THE VOIGT FUNCTION
(Fig. 5). The relationship betweenr andr 9 can be shown t
e

r 5
r 9

F 1

Îp ln 2
1 r 9S1 2

1

Îp ln 2DG
. [30]

CONCLUSIONS

A derivation of an approximation to the Voigt functi
consisting of a linear combination of Lorentzian and Gaus
functions of equal width is presented. The derivation give
limited to the range of Voigt line shapes which are ei
predominantly Lorentzian or Gaussian in nature. It would b
interest, however, to extend this to include values ofa close to

. None the less, use of the approximation as a model fun
esults in peak areas that are accurate to within 0.72% ov
ntire range of the Voigt parameter. With an empirical ana
f the approximation, we have shown that the direct reco
f T2 values from line shapes is restricted to peaks tha
redominantly Lorentzian.
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